Self-Compacting Concrete (SCC) is a high performance concrete that can flow through every corner in the congested reinforcement sections under its own weight without segregation and bleeding. The SCC is developed by increasing the paste volume and using chemical and mineral admixtures. The fresh and hardened characteristics of SCC are affected by the water available for hydration, humidity and temperature. Curing is adopted to ensure the availability of water for the hydration of cement and this can be done in two ways, i.e., Water adding techniques, and Water-retraining techniques. Self-curing concrete is developed by water retaining technique using various methods. Addition of curing compound to SCC results in self-curing self-compacting concrete (SCSCC). In the present study, the self-curing selfcompacting concrete is developed by using polyethylene glycol as the curing compound and by replacing river sand with quartz sand as fine aggregate. The self curing process is initiated by adding polyethylene glycol to the concrete specimens. To increase in tensile strength, the steel fibers of 1.5% of the cement content are added. The paper addresses the effect polyethylene glycol on fresh and the hardened properties of M60 grade SCSCC. The mechanical properties are presented for 7 and 28 days and are compared with the same grade of SCC with various methods of curing.