References
[2].
Chen, W., Zha, H., Chen, Z., Xiong, W., Wang, H., & Wang, W. (2020). Hybridqa: A dataset of multi-hop question answering over tabular and textual data. arXiv preprint arXiv:2004.07347.
[5].
Huang, J., Wang, M., Cui, Y., Liu, J., Chen, L., Wang, T. & Wu, J. (2024). Layered query retrieval: An adaptive framework for retrieval-augmented generation in complex question answering for large language models. Applied Sciences, 14(23), 11014.
[7].
Lakshmi, K. P., Shraddha, V., Abhinava, V., Kavya, K., & Gayathri, R. (2017). Sentiment analysis and prediction using text mining. Indian Journal of Science and Technology, 10, 28.
[8]. Lv, S., Guo, D., Xu, J., Tang, D., Duan, N., Gong, M., & Hu, S. ( 2020 ) . Graph- based reasoning over heterogeneous external knowledge for commonsense question answering. In Proceedings of the AAAI Conference on Artificial Intelligence, 34, (05), 8449-8456.
[13]. Prasanna, N. L., Vaishnavi, R., Lakshmi, V. P., Dakshayani, V., & Keerthana, T. (2021). Multi label classification for an image using convolutional neural networks. International Journal of Computer Science and Mobile Computing (IJCSMC), 10, 1-9.
[14]. Prasanna, T. L., & Krishna, M. M. (2014). Integrating swarm intelligence with machine learning techniques for android malware detection through API call analysis. International Journal of Computer Science Trends and Technology (IJCST), 12 (2), 1-13.
[15].
Prokopenko, M., Wang, P., Marian, S., Bai, A., Li, X., & Chen, X. (2018). RoboCup 2D soccer simulation league: Evaluation challenges. In RoboCup 2017: Robot World Cup XXI 11 (pp. 325-337). Springer International Publishing.
[17].
Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhutdinov, R., & Cohen, W. W. (2018). Open domain question answering using early fusion of knowledge bases and text. arXiv preprint arXiv:1809.00782.
[18]. Xiong, C., Merity, S., & Socher, R. (2016). Dynamic memory networks for visual and textual question answering. In International Conference on Machine Learning (pp. 2397-2406). PMLR.