References
[1]. Ağbulut, Ü., Karagöz, M., Sarıdemir, S., & Öztürk, A. (2020). Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel, 270, 117521. https://doi.org/10.1016/j.fuel.2020.117 521
[2]. Elwardany, A. E., Marei, M. N., Eldrainy, Y., Ali, R. M., Ismail, M., & El-Kassaby, M. M. (2020). Improving performance and emissions characteristics of compression ignition engine: Effect of ferrocene nanoparticles to dieselbiodiesel blend. Fuel, 270, 117574. https://doi.org/10.1016/ j.fuel.2020.117574
[3]. Hatami, M., Hasanpour, M., & Jing, D. (2020). Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. Journal of Molecular Liquids, 319, 114156. https://doi.org/10.1016/j.molliq.2020.114156
[4]. Manigandan, S., Sarweswaran, R., Devi, P. B., Sohret, Y., Kondratiev, A., Venkatesh, S., ... & Joshua, J. J. (2020). Comparative study of nanoadditives TiO , CNT, Al O , CuO and CeO on reduction of diesel engine emission 2 operating on hydrogen fuel blends. Fuel, 262, 116336. https://doi.org/10.1016/j.fuel.2019.116336
[5]. Marchetti, J. M. (2013). Influence of economical variables on a supercritical biodiesel production process. Energy Conversion and Management, 75, 658-663. https://doi.org/10.1016/j.enconman.2013.07.039
[6]. Mujtaba, M. A., Kalam, M. A., Masjuki, H. H., Gul, M., Soudagar, M. E. M., Ong, H. C., ... & Yusoff, M. (2020). Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements. Fuel, 279, 118434. https://doi.org/ 10.1016/j.fuel.2020.118434
[7]. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO photocatalysis: Mechanisms and 2 materials. Chemical Reviews, 114(19), 9919-9986. https:// doi.org/10.1021/cr5001892
[8]. Sukumar, R. S., Rao, M. M., & Krishna, A. G. (2019). Synthesis and characterization of Cerium Oxide nanoparticles and its applicability as fuel catalyst. In Recent Advances in Material Sciences (pp. 627-635). Singapore: Springer. https://doi.org/10.1007/978-981-13-7 643-6_51
[9]. Venu, H., & Appavu, P. (2020). Al O nano additives 2 3 blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine. Fuel, 279, 118518. https://doi.org/10.1016/j.fuel.2020.118518
[10]. Wang, R., Jiang, G., Ding, Y., Wang, Y., Sun, X., Wang, X., & Chen, W. (2011). Photocatalytic activity of heterostructures based on TiO and halloysite nanotubes. 2 ACS Applied Materials & Interfaces, 3(10), 4154-4158. https://doi.org/10.1021/am201020q
[11]. Xu, X., Zhai, T., Shao, M., & Huang, J. (2012). Anodic formation of anatase TiO nanotubes with rod-formed walls 2 for photocatalysis and field emitters. Physical Chemistry Chemical Physics, 14(47), 16371-16376. https://doi.org/ 10.1039/C2CP43168H
[12]. Zhang, Q., Ma, L., Zhao, Q., Li, Z., & Xu, X. (2015). Mophology-modulations of TiO nanostructures for 2 enhanced photocatalytic performance. Applied Surface Science, 332, 224-228. https://doi.org/10.1016/j.apsusc. 2015.01.052