References
[1]. Baker, T. P., & Cirinei, M. (2006, December). A necessary and sometimes sufficient condition for the feasibility of sets of sporadic hard-deadline tasks. In 2006 27th IEEE International Real-Time Systems Symposium (RTSS'06) (pp. 178-190). IEEE. https://doi.org/10.1109/RTSS. 2006.7
[2]. Charr, J. C., Couturier, R., Fanfakh, A., & Giersch, A. (2014, August). Dynamic frequency scaling for energy consumption reduction in synchronous distributed applications. In 2014 IEEE International Symposium on Parallel and Distributed Processing with Applications (pp. 225-230). IEEE. https://doi.org/10.1109/ISPA.2014.38
[3]. Chen, Y. L., Chang, M. F., Yu, C. W., Chen, X. Z., & Liang, W. Y. (2018). Learning-directed dynamic voltage and frequency scaling scheme with adjustable performance for single-core and multi-core embedded and mobile systems. Sensors, 18(9), 1-25. https://doi.org/ 10.3390/s18093068
[4]. Cochran, R., Hankendi, C., Coskun, A., & Reda, S. (2011, November). Identifying the optimal energy-efficient operating points of parallel workloads. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 608-615). IEEE. https://doi.org/10110 9/ICCAD.2011.6105393
[5]. Da Rosa, T. R., Larréa, V., Calazans, N., & Moraes, F. G. (2012, August). Power consumption reduction in MPSoCs through DFS. In 2012 25th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1-6). IEEE.
[6]. Fanfakh, A. B. M. (2016). Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling, (Doctoral dissertation), University of Franche-Comte. Retrived from https://pdfs.semantics cholar.org/2c04/0e77e51aea5a2385a49e9b230844cf4f 0d6b.pdf
[7]. Fettes, Q., Clark, M., Bunescu, R., Karanth, A., & Louri, A. (2018). Dynamic voltage and frequency scaling in NoCs with supervised and reinforcement learning techniques. IEEE Transactions on Computers, 68(3), 375-389. https://doi.org/10.1109/TC.2018.2875476
[8]. Gupta, U., Mandal, S. K., Mao, M., Chakrabarti, C., & Ogras, U. Y. (2019). A deep Q-learning approach for dynamic management of heterogeneous processors. IEEE Computer Architecture Letters, 18(1), 14-17. https:// doi.org/10.1109/LCA.2019.2892151
[9]. Henkel, J., & Parameswaran, S. (2007). Designing embedded processors: A low power perspective. Springer Science & Business Media. https://doi.org/10.1 007/978-1- 4020-5869-1
[10]. Li, J., Luo, Z., Ferry, D., Agrawal, K., Gill, C., & Lu, C. (2015). Global EDF scheduling for parallel real-time tasks. Real-Time Systems, 51(4), 395-439. https://doi.org/10.10 07/s11241-014-9213-9
[11]. Molnos, A., Lesecq, S., Mottin, J., & Puschini, D. (2016). Investigation of Q-learning applied to DVFS management of a System-on-Chip. IFAC-PapersOnLine, 49(5), 278-284. https://doi.org/10.1016/j.ifacol.2016.07. 126
[12]. Navet, N., & Grajar, B. (2006). Systèmes temps réel, Hermes.
[13]. Parain, F., Banâtre, M., Cabillic, G., Higuera-Toledano, M. T., Issarny, V., & Lesot, J. P. (2001). Techniques de réduction de la consommation dans un système embarqué temps réel. Technique et Science Informatiques, 20(10), 1247-1278.
[14]. Rauber, T., Rünger, G., Schwind, M., Xu, H., & Melzner, S. (2014). Energy measurement, modeling, and prediction for processors with frequency scaling. The Journal of Supercomputing, 70(3),1451-1476. https://doi.org/10.10 07/s11227-014-1236-4
[15]. Rountree, B., Lowenthal, D. K., Funk, S., Freeh, V. W., De Supinski, B. R., & Schulz, M. (2007, November). Bounding energy consumption in large-scale MPI programs. In SC'07: Proceedings of the 2007 ACM/IEEE Conference on S u p e r c o m p u t i n g ( p p . 1 - 9 ) . I E E E . h t t p s : / /doi.org/10.1145/1362622.1362688
[16]. ul Islam, F. M. M., & Lin, M. (2015). Hybrid DVFS scheduling for real-time systems based on reinforcement learning. IEEE Systems Journal, 11(2), 931-940. https://doi .org/10.1109/JSYST.2015.2446205
[17]. ul Islam, F. M. M., Lin, M., Yang, L. T., & Choo, K. K. R. (2018). Task aware hybrid DVFS for multi-core real-time systems using machine learning. Information Sciences, 433, 315-332. https://doi.org/10.1016/j.ins.2017.08.042
[18]. Yousra, N., & Samir, B. A. (2019, July). Intelligent online configuration for DVFS multiprocessor architecture: fuzzy approach. In International Conference on Industrial, Engineering and other Applications of Applied Intelligent Systems (pp.616-627). Springer, Cham. https://doi.org/10. 1007/978-3-030-22999-3_53
[19]. Zhang, Q., Lin, M., Yang, L. T., Chen, Z., & Li, P. (2017). Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Transactions on Sustainable Computing, 4(1), 132-141. https://doi.org/10. 1109/TSUSC.2017.2743704
[20]. Zhang, Q., Lin, M., Yang, L. T., Chen, Z., Khan, S. U., & Li, P. (2018). A double deep Q-learning model for energyefficient edge scheduling. IEEE Transactions on Services Computing, 12(5), 739-749. https://doi.org/10.1109/TS C.2018.2867482