Energy Aware Multiprocessor Architecture Configuration: DQN Approach

Najar Yousra*, Samir Ben Ahmed**
* Department of Science Computer School (ISI), Tunis in Tunisia.
** University of Science and Technology (FST), Tunis in Tunisia.
Periodicity:July - December'2019
DOI : https://doi.org/10.26634/jes.8.1.16922

Abstract

This research investigates a new Deep Q-Network (DQN) based approach to manage Dynamic Voltage Frequency Scaling (DVFS) on a multiprocessor architecture, such that it would guarantee the balance between energy consumption minimization and application feasibility. This paper also addresses software periodic real time applications with time constraints. The proposed DQN formulation operates in two steps: on offline and on online configuration. It calculates the optimal number of activated homogenous cores and their frequency and reconfigures the platform with these parameters. We perform an experimental investigation on different parameters in a simulation environment executing periodic tasks that are generated randomly with different system charge. The results suggest that the proposed method reduces energy upto CC-EDF and Static-EDF and guarantees schedulability test when compared to state of the art feedback that addresses the same applications.

Keywords

Deep Q-Network (DQN), Energy Optimization, Multiprocessor Architecture, Periodic Tasks, System Schedulability.

How to Cite this Article?

Yousra, N., and Ahmed, S. B. (2019). Energy Aware Multiprocessor Architecture Configuration: DQN Approach. i-manager's Journal on Embedded Systems, 8(1), 1-9. https://doi.org/10.26634/jes.8.1.16922

References

[1]. Baker, T. P., & Cirinei, M. (2006, December). A necessary and sometimes sufficient condition for the feasibility of sets of sporadic hard-deadline tasks. In 2006 27th IEEE International Real-Time Systems Symposium (RTSS'06) (pp. 178-190). IEEE. https://doi.org/10.1109/RTSS. 2006.7
[2]. Charr, J. C., Couturier, R., Fanfakh, A., & Giersch, A. (2014, August). Dynamic frequency scaling for energy consumption reduction in synchronous distributed applications. In 2014 IEEE International Symposium on Parallel and Distributed Processing with Applications (pp. 225-230). IEEE. https://doi.org/10.1109/ISPA.2014.38
[3]. Chen, Y. L., Chang, M. F., Yu, C. W., Chen, X. Z., & Liang, W. Y. (2018). Learning-directed dynamic voltage and frequency scaling scheme with adjustable performance for single-core and multi-core embedded and mobile systems. Sensors, 18(9), 1-25. https://doi.org/ 10.3390/s18093068
[4]. Cochran, R., Hankendi, C., Coskun, A., & Reda, S. (2011, November). Identifying the optimal energy-efficient operating points of parallel workloads. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 608-615). IEEE. https://doi.org/10110 9/ICCAD.2011.6105393
[5]. Da Rosa, T. R., Larréa, V., Calazans, N., & Moraes, F. G. (2012, August). Power consumption reduction in MPSoCs through DFS. In 2012 25th Symposium on Integrated Circuits and Systems Design (SBCCI) (pp. 1-6). IEEE.
[6]. Fanfakh, A. B. M. (2016). Energy Consumption Optimization of Parallel Applications with Iterations using CPU Frequency Scaling, (Doctoral dissertation), University of Franche-Comte. Retrived from https://pdfs.semantics cholar.org/2c04/0e77e51aea5a2385a49e9b230844cf4f 0d6b.pdf
[7]. Fettes, Q., Clark, M., Bunescu, R., Karanth, A., & Louri, A. (2018). Dynamic voltage and frequency scaling in NoCs with supervised and reinforcement learning techniques. IEEE Transactions on Computers, 68(3), 375-389. https://doi.org/10.1109/TC.2018.2875476
[8]. Gupta, U., Mandal, S. K., Mao, M., Chakrabarti, C., & Ogras, U. Y. (2019). A deep Q-learning approach for dynamic management of heterogeneous processors. IEEE Computer Architecture Letters, 18(1), 14-17. https:// doi.org/10.1109/LCA.2019.2892151
[9]. Henkel, J., & Parameswaran, S. (2007). Designing embedded processors: A low power perspective. Springer Science & Business Media. https://doi.org/10.1 007/978-1- 4020-5869-1
[10]. Li, J., Luo, Z., Ferry, D., Agrawal, K., Gill, C., & Lu, C. (2015). Global EDF scheduling for parallel real-time tasks. Real-Time Systems, 51(4), 395-439. https://doi.org/10.10 07/s11241-014-9213-9
[11]. Molnos, A., Lesecq, S., Mottin, J., & Puschini, D. (2016). Investigation of Q-learning applied to DVFS management of a System-on-Chip. IFAC-PapersOnLine, 49(5), 278-284. https://doi.org/10.1016/j.ifacol.2016.07. 126
[12]. Navet, N., & Grajar, B. (2006). Systèmes temps réel, Hermes.
[13]. Parain, F., Banâtre, M., Cabillic, G., Higuera-Toledano, M. T., Issarny, V., & Lesot, J. P. (2001). Techniques de réduction de la consommation dans un système embarqué temps réel. Technique et Science Informatiques, 20(10), 1247-1278.
[14]. Rauber, T., Rünger, G., Schwind, M., Xu, H., & Melzner, S. (2014). Energy measurement, modeling, and prediction for processors with frequency scaling. The Journal of Supercomputing, 70(3),1451-1476. https://doi.org/10.10 07/s11227-014-1236-4
[15]. Rountree, B., Lowenthal, D. K., Funk, S., Freeh, V. W., De Supinski, B. R., & Schulz, M. (2007, November). Bounding energy consumption in large-scale MPI programs. In SC'07: Proceedings of the 2007 ACM/IEEE Conference on S u p e r c o m p u t i n g ( p p . 1 - 9 ) . I E E E . h t t p s : / /doi.org/10.1145/1362622.1362688
[16]. ul Islam, F. M. M., & Lin, M. (2015). Hybrid DVFS scheduling for real-time systems based on reinforcement learning. IEEE Systems Journal, 11(2), 931-940. https://doi .org/10.1109/JSYST.2015.2446205
[17]. ul Islam, F. M. M., Lin, M., Yang, L. T., & Choo, K. K. R. (2018). Task aware hybrid DVFS for multi-core real-time systems using machine learning. Information Sciences, 433, 315-332. https://doi.org/10.1016/j.ins.2017.08.042
[18]. Yousra, N., & Samir, B. A. (2019, July). Intelligent online configuration for DVFS multiprocessor architecture: fuzzy approach. In International Conference on Industrial, Engineering and other Applications of Applied Intelligent Systems (pp.616-627). Springer, Cham. https://doi.org/10. 1007/978-3-030-22999-3_53
[19]. Zhang, Q., Lin, M., Yang, L. T., Chen, Z., & Li, P. (2017). Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Transactions on Sustainable Computing, 4(1), 132-141. https://doi.org/10. 1109/TSUSC.2017.2743704
[20]. Zhang, Q., Lin, M., Yang, L. T., Chen, Z., Khan, S. U., & Li, P. (2018). A double deep Q-learning model for energyefficient edge scheduling. IEEE Transactions on Services Computing, 12(5), 739-749. https://doi.org/10.1109/TS C.2018.2867482
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.