References
[1]. Das, N., et al. (2023). AI-driven optimization for smart material lifecycle. Advanced Intelligent Systems, 5(6), 2300011.
[3]. Guo, W., et al. (2023). Piezoelectric smart materials for energy harvesting. Nano Energy, 108, 108032.
[4]. Gupta, T., et al. (2023). Lifecycle analysis of smart textile materials. Journal of Industrial Ecology.
[5].
Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S., & Schubert, U. S. (2010). Self-healing materials. Advanced Materials, 22(47), 5424–5430.
[6]. Islam, M. R., et al. (2022). Green synthesis and biodegradability in advanced polymers. ACS Sustainable Chemistry & Engineering, 10(5), 1583–1597.
[7]. Kim, D.H., Ghaffari, R., Lu, N., & Rogers, J. A. (2012). Flexible and stretchable electronics for bio-integrated devices. Annual Review of Biomedical Engineering, 14, 113–128.
[8]. Kumar, A., et al. (2019). Eco-friendly synthesis of nanocomposites. Green Chemistry Letters and Reviews, 12(3), 235–249.
[10]. Li, J., et al. (2022). Eco-design strategies for smart materials. Renewable and Sustainable Energy Reviews, 153, 111732.
[11].
Liu, Y., Gall, K., Dunn, M. L., McCluskey, P., & Finch, D. (2014). Shape memory polymers and composites in aerospace applications. Smart Materials and Structures, 23(12), 123001.
[12]. Mehta, R., & Bhattacharya, P. (2022). Sustainable nanomanufacturing techniques. Green Materials, 10(3), 157–171.
[13]. Mohseni, M., Druska, D., Berghoff, M., & Jeong, J. (2019). Integrated wearable smart textiles for health monitoring. Advanced Materials Technologies, 4(4), 1800702.
[15]. Nanda, P., et al. (2021). Eco-friendly processing of smart polymers. Materials Today Chemistry, 21, 100546.
[16]. Otsuka, K., & Wayman, C. M. (1999). Shape Memory Materials. Cambridge University Press.
[17]. Roy, A., & Basu, S. (2020). Smart materials in civil engineering applications. Journal of Intelligent Material Systems and Structures.
[18]. Roy, T., et al. (2023). Integrating LCA and biodegradability in material design. Environmental Science & Technology, 57(12), 4567–4579.
[19]. Sabu, T., et al. (2022). Smart Materials: Design, Preparation, and Applications. Springer.
[20]. Sharma, V., & Chauhan, K. (2023). Environmentally benign synthesis pathways for responsive polymers. Journal of Polymers and the Environment, 31, 4153–4170.
[21]. Singh, S., & Patra, D. (2021). Life cycle assessment of smart material production. Journal of Cleaner Production, 278, 123421.
[23]. Verma, R. K., et al. (2024). Circular economy in intelligent materials. Sustainable Materials and Technologies, 35, e00588.
[24]. Wang, C., et al. (2021). Bio-based smart composites for environmental monitoring. Materials Today Sustainability, 14, 100082.
[25]. Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on ZnO nanowire arrays. Science, 312(5771), 242–246.
[26].
White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409, 794–797.
[27]. Wu, Y., et al. (2022). Bioinspired multifunctional smart materials. Chemical Society Reviews, 51, 1535–1574.
[28]. Yoon, H. (2014). Recent progress in conducting polymer-based nanomaterials for flexible bio-electronic devices. Advanced Materials.
[29]. Zhang, Q., et al. (2021). Smart cement composites with self-sensing capabilities. Sensors and Actuators A: Physical, 331, 112995.
[30]. Zhang, X., Xu, R., Xu, F., & Lin, M. (2018). Thermo-responsive hydrogels: Mechanisms and applications. Materials Science and Engineering: C, 93, 153–176.
[31]. Zhao, L., et al. (2020). Biodegradable polymer materials for sustainable development. Progress in Polymer Science, 109, 101286.