References
[1]. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617- 1655. https://doi.org/10.1109/COMST.2016.2532458
[2]. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257-279. https://doi. org/10.1016/j.adhoc.2005.01.004
[3]. Akyildiz, I. F., Pompili, D., & Melodia, T. (2006, September). State-of-the-art in protocol research for underwater acoustic sensor networks. In Proceedings of the 1st ACM International Workshop on Underwater Networks (pp. 7-16).
[4]. Ali, M. F., Jayakody, D. N. K., Chursin, Y. A., Affes, S., & Dmitry, S. (2020). Recent advances and future directions on underwater wireless communications. Archives of Computational Methods in Engineering, 27(5), 1379-1412. https://doi.org/10.1007/s11831-019-09354-8
[5]. Ali, M. F., Jayakody, D. N. K., Perera, T. D. P., Srinivasan, K., Sharma, A., & Krikidis, I. (2019, March). Underwater communications: Recent advances. In Proceedings of the International Conference on Emerging Technologies of Information and Communications (ETIC) (pp. 97-102).
[6]. Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. In Pinho (Ed.), Optical Communication Technology, (pp. 5 - 40). https://doi.org/10.5772/intechopen.69113
[7]. Aminjavaheri, A., & Farhang-Boroujeny, B. (2015, October). UWA massive MIMO communications. In OCEANS 2015-MTS/IEEE Washington (pp. 1-6). IEEE.
[8]. Annalakshmi, G., & Murugan, S. S. (2017). Underwater acoustic modem-challenges, technology and applications-A review survey. Oceanography & Fisheries Open Access Journal, 2(3), 60-69. https://doi.org/10. 19080/OFOAJ.2017.02.555592
[9]. Arnon, S. (2010). Underwater optical wireless communication network. Optical Engineering, 49(1). https://doi.org/10.1117/1.3280288
[10]. Arnon, S., & Kedar, D. (2009). Non-line-of-sight underwater optical wireless communication network. Journal of the Optical Society of America A, 26(3), 530- 539. https://doi.org/10.1364/JOSAA.26.000530
[11]. Bahr, A., Leonard, J. J., & Fallon, M. F. (2009). Cooperative localization for autonomous underwater vehicles. The International Journal of Robotics Research, 28(6), 714-728. https://doi.org/10.1177%2F02783649081 00561
[12]. Bai, M., Huang, Y., Chen, B., Yang, L., & Zhang, Y. (2020). A Novel Mixture Distributions-Based Robust Kalman Filter for Cooperative Localization. IEEE Sensors Journal, 20(24), 14994-15006. https://doi.org/10.1109/JSEN.2020.3 012153
[13]. Baiden, G., Bissiri, Y., & Masoti, A. (2009). Paving the way for a future underwater omni-directional wireless optical communication systems. Ocean Engineering, 36(9-10), 633-640. https://doi.org/10.1016/j.oceaneng. 2009.03.007
[14]. Benson, B., Li, Y., Faunce, B., Domond, K., Kimball, D., Schurgers, C., & Kastner, R. (2010). Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, 2(3), 58-61. https://doi.org/10.1109/LES.2010.2050 191
[15]. Blackmon, F., Estes, L., & Fain, G. (2005). Linear optoacoustic underwater communication. Applied Optics, 44(18), 3833-3845. https://doi.org/10.1364/AO.44. 003833
[16]. Bourré, A., Lmai, S., Laot, C., & Houcke, S. (2013, June). A robust OFDM modem for underwater acoustic communications. In 2013, MTS/IEEE OCEANS-Bergen (pp. 1-5). IEEE. https://doi.org/10.1109/OCEANS-Bergen.2013. 6608003
[17]. Burrowes, G., & Khan, J. Y. (2011). Short-range underwater acoustic communication networks. In Cruz, N. (Ed.), Autonomous underwater vehicles. (pp. 173- 198). https://doi.org/10.5772/24098
[18]. Cabral, H. M. P. (2014). Acoustic Modem for Underwater Communication [Postgraduate Thesis]. Faculty of Engineering, University of Porto, Portugal.
[19]. Cheon, J., & Cho, H. S. (2017). Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications. Sensors, 17(11). https://doi.org/ 10.3390/s17112465
[20]. CISCO. (2017). Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021. San Jose, USA: Cisco.
[21]. Darwiesh, M., El-Sherif, A. F., Ayoub, H. S., El-sharkawy, Y. H., & Hassan, M. F. (2018, April). Hyper-spectral laser imaging of under-water targets. In International Conference on Mathematics and Engineering Physics (ICMEP-9) (Vol.9, pp. 1-10). https://doi.org/10.21608/icm ep.2018.29583
[22]. DeMartino, C. (2017). Millimeter Waves: Are millimeter waves the wave of the future? Retrieved from https://www.mwrf.com/community/are-millimeter-waveswave- future
[23]. Friedman, N. (2009). Network-centric warfare: How navies learned to fight smarter through three world wars. Naval Institute Press.
[24]. Gabriel, C., Khalighi, M. A., Bourennane, S., Léon, P., & Rigaud, V. (2013). Monte-Carlo-based channel characterization for underwater optical communication systems. Journal of Optical Communications and Networking, 5(1), 1-12. https://doi.org/10.1364/JOCN.5.00 0001
[25]. Gauni, S., Manimegalai, C. T., Krishnan, K. M., Shreeram, V., Arvind, V. V., & Srinivas, T. N. (2021). Design and analysis of co-operative acoustic and optical hybrid communication for underwater communication. Wireless Personal Communications, 117(2), 561-575. https://doi. org/10.1007/s11277-020-07883-1
[26]. Gkikopouli, A., Nikolakopoulos, G., & Manesis, S. (2012, July). A survey on underwater wireless sensor networks and applications. In 2012, 20th Mediterranean Conference on Control & Automation (MED) (pp. 1147- 1154). IEEE. https://doi.org/10.1109/MED.2012.6265793
[27]. Guo, Z., Li, Z., & Hong, F. (2009, January). USS-TDMA: Self-stabilizing TDMA algorithm for underwater wireless sensor network. In 2009, International Conference on Computer Engineering and Technology (Vol. 1, pp. 578- 582). IEEE. https://doi.org/10.1109/ICCET.2009.54
[28]. Gussen, C. M., Diniz, P. S., Campos, M. L., Martins, W. A., Costa, F. M., & Gois, J. N. (2016). A survey of underwater wireless communication technologies. Journal of Communication and Information Systems, 31(1), 242-255.
[29]. Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater wireless sensor networks: A survey. Sensors, 12(2), 2026-2061. https://doi. org/10.3390/s120202026
[30]. Han, S., Noh, Y., Liang, R., Chen, R., Cheng, Y. J., & Gerla, M. (2014). Evaluation of underwater opticalacoustic hybrid network. China Communications, 11(5), 49-59. https://doi.org/10.1109/CC.2014.68804 60
[31]. Hanson, F., & Radic, S. (2008). High bandwidth underwater optical communication. Applied Optics, 47(2), 277-283. https://doi.org/10.1364/AO.47.000277
[32]. Harris III, A. F., Stojanovic, M., & Zorzi, M. (2009). Idletime energy savings through wake-up modes in underwater acoustic networks. Ad Hoc Networks, 7(4), 770- 777. https://doi.org/10.1016/j.adhoc.2008.07.014
[33]. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158-175. https://doi.org/10.1098/rsta.2011.0214
[34]. Jaruwatanadilok, S. (2008). Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE Journal on Selected Areas in Communications, 26(9), 1620-1627. https://doi.org/10.1109/JSAC.2008.081202
[35]. Jeon, J. H., Hwangbo, S. H., Peyvandi, H., & Park, S. J. (2012, October). Design and implementation of a bidirectional acoustic micro-modem for underwater communication systems. In 2012, Oceans (pp. 1-4). IEEE. https://doi.org/10.1109/OCEANS.2012.6404886
[36]. Jinqiu, W., Gang, Q., & Pengbin, K. (2018). Emerging 5G multicarrier chaotic sequence spread spectrum technology for underwater acoustic communication. Complexity, 1-7. https://doi.org/10.1155/2018/3790529
[37]. Kao, C. C., Lin, Y. S., Wu, G. D., & Huang, C. J. (2017). A comprehensive study on the internet of underwater things: Applications, challenges, and channel models. Sensors, 17(7). https://doi.org/10.3390/s17071477
[38]. Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 19(1), 57-96. https://doi.org/10.1109/COMST.2016.2603 518
[39]. Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518- 1547. https://doi.org/10.1109/ACCESS.2016.2552538
[40]. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. https://doi.org/10.1109/COMST.2014. 2329501
[41]. Kumar, M. L., & Rani, M. J. (2019). A design of novel hybrid opto-acoustic modem for under water communication. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(8), 3383- 3389.
[42]. Kumar, M. L., Rani, M. J., & Anand, M. (2019). Research survey on issues and challenges in underwater optical and acoustic communication. Journal of Advanced Research in Dynamical & Control Systems, 11(02), 765-776.
[43]. Kumar, M. L., Rani, M. J., & Anand, M. (2020). Underwater optical and acoustic communication through a novel hybrid opto-acoustic modem. Journal of Advanced Research in Dynamical & Control Systems, 12(06), 1723-1732.
[44]. Lacovara, P. (2008). High-bandwidth underwater communications. Marine Technology Society Journal, 42(1), 93-102.
[45]. Lanbo, L., Shengli, Z., & JunHong, C. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977-994. https://doi.org/10. 1002/wcm.654
[46]. Leeson, M. S., & Higgins, M. D. (2018). Optical wireless and millimeter waves for 5G access networks. In Kishk, A. (Ed.), The Fifth Generation (5G) of Wireless Communication. (pp. 5 - 24.) IntechOpen. https://doi.org/10.5772/intech open.77336
[47]. Li, B., Huang, J., Zhou, S., Ball, K., Stojanovic, M., Freitag, L., & Willett, P. (2009). MIMO-OFDM for high-rate underwater acoustic communications. IEEE Journal of Oceanic Engineering, 34(4), 634-644. https://doi.org/10. 1109/JOE.2009.2032005
[48]. Li, B., Zhou, S., Stojanovic, M., Freitag, L., & Willett, P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering, 33(2), 198-209. https:// doi.org/10.1109/JOE.2008.920471
[49]. Munafò, A., Simetti, E., Turetta, A., Caiti, A., & Casalino, G. (2011). Autonomous underwater vehicle teams for adaptive ocean sampling: A data-driven approach. Ocean Dynamics, 61(11), 1981-1994. https:// doi.org/10.1007/s10236-011-0464-x
[50]. Nowsheen, N., Benson, C., & Frater, M. (2010, September). A high data-rate, software-defined underwater acoustic modem. In Oceans 2010 MTS/IEEE Seattle (pp. 1-5). IEEE. https://doi.org/10.1109/OCEANS. 2010.5664474
[51]. Paradis, B., Bachand, C. L., Gendron, P. J., & Brown, D. A. (2014, May). Development of a high frequency underwater acoustic communication modem. In Proceedings of Meetings on Acoustics 167ASA (Vol. 21, No. 1). Acoustical Society of America. https://doi.org/10.1121/ 1.4884782
[52]. Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264-302. https://doi.org/10.1109/COMST. 2017.2783901
[53]. Pirinen, P. (2014, November). A brief overview of 5G research activities. In 1st International Conference on 5G for Ubiquitous Connectivity (pp. 17-22). IEEE.
[54]. Saeed, N., Celik, A., Al-Naffouri, T. Y., & Alouini, M. S. (2018). Underwater optical wireless communications, networking, and localization: A survey. Ad-Hoc Networks.
[55]. Sánchez, A. M., Blanc, C. S., Yuste, P. P., Perles, I. A., & Serrano, M. J. J. (2011, June). An acoustic modem featuring a multi-receiver and ultra-low power. Circuits and Systems, 6(1), 1-12. https://doi.org/10.4236/cs.2015.61001
[56]. Sánchez, A. M., Blanc, C. S., Yuste, P. P., & Serrano, M. J. J. (2011, June). A low cost and high efficient acoustic modem for underwater sensor networks. In OCEANS 2011 IEEE-Spain (pp. 1-10). IEEE. https://doi.org/10.1109/ Oceans-Spain.2011.6003428
[57]. Santoso, T. B., Wirawan., & Hendrantoro, G. (2009). Under water acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84-89. https://doi.org/ 10.1109/MCOM.2009.4752682
[58]. Schirripa, S. G., Cozzella, L., & Leccese, F. (2020). Underwater optical wireless communications: Overview. Sensors, 20(8). https://doi.org/10.3390/s20082261
[59]. Shi, J., Zhang, S., & Yang, C. J. (2012, May). High frequency RF based non-contact under water communication. In 2012, Oceans-Yeosu (pp. 1-6). IEEE. https://doi.org/10.1109/OCEANS-Yeosu.2012.6263403
[60]. Sozer, E. M. (2005, June). Simulation and rapid prototyping environment for underwater acoustic communications: Reconfigurable modem. In Europe Oceans 2005 (Vol. 1, pp. 80-85). IEEE. https://doi.org/ 10.1109/OCEANSE.2005.1511688
[61]. Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (Eds.). (2016). Optical wireless communications: An emerging technology. Springer.
[62]. Wills, J., Ye, W., & Heidemann, J. (2006, September). Low-power acoustic modem for dense underwater sensor networks. In Proceedings of the 1st ACM international workshop on Underwater networks (pp. 79-85).
[63]. Wu, J., Ma, X., Qi, X., Babar, Z., & Zheng, W. (2017). Influence of pulse shaping filters on PAPR performance of underwater 5G communication system technique: GFDM. Wireless Communications and Mobile Computing.
[64]. Wu, L., Trezzo, J., Mirza, D., Roberts, P., Jaffe, J., Wang, Y., & Kastner, R. (2011). Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embedded Systems Letters, 4(1), 1-4. https://doi.org/10.1109/LES.2011. 2180013
[65]. Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2016). A survey of underwater optical wireless communications. IEEE Communications Surveys & Tutorials, 19(1), 204-238. https://doi.org/10.1109/COMST. 2016.2618841
[66]. Zhou, S., & Wang, Z. (2014). OFDM for underwater acoustic communications. John Wiley & Sons.
[67]. Zia, M. Y. I., Poncela, J., & Otero, P. (2021). State-ofthe- Art underwater acoustic communication modems: Classifications, analyses and design challenges. Wireless Personal Communications, 116(2), 1325-1360. https://doi. org/10.1007/s11277-020- 07431-x,