A Review on Underwater Acoustic/Optical Modems: Design Issues, Recent Developments and Challenges in Underwater Communication

Ch. Pallavi *, G. Sreenivasulu **
* Research Scholar, Department of Electronics and Communication Engineering, Sri Venkateswara University College of Engineering, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
** Professor, Department of Electronics and Communication Engineering, Sri Venkateswara University College of Engineering, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
Periodicity:July - December'2020
DOI : https://doi.org/10.26634/jcs.9.2.18042

Abstract

Underwater communication (UWC) has become an important data transmission technology for commercial and military marine applications in the past couple of decades. Besides regular communication inside the water, other applications include Remotely Operated Vehicles (ROV), Underwater Sensor Networks (UWSN), Autonomous Underwater Vehicles (AUV), underwater sports, coastal surveillance systems, environmental research, oil-rig maintenance, linking submarines to land, etc. The main limitations of Underwater Acoustic Communication are frequency-dependent attenuation, short range of communication, very low bandwidth, and very low data rates for monitoring applications because of velocity of sound in water. To beat the restrictions of acoustic communication is to use optical communication whose wavelength lies within the visible region. Consistent with our survey on the properties of acoustic and optical communication, results have shown significant trade-offs between bandwidth, propagation delay, power consumption, SNR, BER and effective communication range. We propose a hybrid solution that mixes the uses of both acoustic and optical communication with the assistance of opto-acoustic modems. Hence, this hybrid approach leads to high data rates, low latency, and an energy-efficient system. Thus, an underwater opto-acoustic modem plays an important role for long distance signal transmission in underwater. This paper provides a comprehensive study of the recent developments and challenges in various underwater modems and also addresses the gaps in development of modems for long distance under water communication. This paper not only provides exhaustive research in underwater acoustic/optical communication using opto-acoustic modems but also aims to provide the development of new ideas that would help in the growth of future underwater communication using fifth generation (5G) communication techniques.

Keywords

Underwater Communication (UWC), Underwater Sensor Networks (UWSN), Opto-Acoustic Modem, Attenuation, Bandwidth, Data Rate. .

How to Cite this Article?

Pallavi, Ch., and Sreenivasulu, G. (2020). A Review on Underwater Acoustic/Optical Modems: Design Issues, Recent Developments and Challenges in Underwater Communication. i-manager's Journal on Communication Engineering and Systems, 9(2), 21-40. https://doi.org/10.26634/jcs.9.2.18042

References

[1]. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617- 1655. https://doi.org/10.1109/COMST.2016.2532458
[2]. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257-279. https://doi. org/10.1016/j.adhoc.2005.01.004
[3]. Akyildiz, I. F., Pompili, D., & Melodia, T. (2006, September). State-of-the-art in protocol research for underwater acoustic sensor networks. In Proceedings of the 1st ACM International Workshop on Underwater Networks (pp. 7-16).
[4]. Ali, M. F., Jayakody, D. N. K., Chursin, Y. A., Affes, S., & Dmitry, S. (2020). Recent advances and future directions on underwater wireless communications. Archives of Computational Methods in Engineering, 27(5), 1379-1412. https://doi.org/10.1007/s11831-019-09354-8
[5]. Ali, M. F., Jayakody, D. N. K., Perera, T. D. P., Srinivasan, K., Sharma, A., & Krikidis, I. (2019, March). Underwater communications: Recent advances. In Proceedings of the International Conference on Emerging Technologies of Information and Communications (ETIC) (pp. 97-102).
[6]. Alimi, I., Shahpari, A., Sousa, A., Ferreira, R., Monteiro, P., & Teixeira, A. (2017). Challenges and opportunities of optical wireless communication technologies. In Pinho (Ed.), Optical Communication Technology, (pp. 5 - 40). https://doi.org/10.5772/intechopen.69113
[7]. Aminjavaheri, A., & Farhang-Boroujeny, B. (2015, October). UWA massive MIMO communications. In OCEANS 2015-MTS/IEEE Washington (pp. 1-6). IEEE.
[8]. Annalakshmi, G., & Murugan, S. S. (2017). Underwater acoustic modem-challenges, technology and applications-A review survey. Oceanography & Fisheries Open Access Journal, 2(3), 60-69. https://doi.org/10. 19080/OFOAJ.2017.02.555592
[9]. Arnon, S. (2010). Underwater optical wireless communication network. Optical Engineering, 49(1). https://doi.org/10.1117/1.3280288
[10]. Arnon, S., & Kedar, D. (2009). Non-line-of-sight underwater optical wireless communication network. Journal of the Optical Society of America A, 26(3), 530- 539. https://doi.org/10.1364/JOSAA.26.000530
[11]. Bahr, A., Leonard, J. J., & Fallon, M. F. (2009). Cooperative localization for autonomous underwater vehicles. The International Journal of Robotics Research, 28(6), 714-728. https://doi.org/10.1177%2F02783649081 00561
[12]. Bai, M., Huang, Y., Chen, B., Yang, L., & Zhang, Y. (2020). A Novel Mixture Distributions-Based Robust Kalman Filter for Cooperative Localization. IEEE Sensors Journal, 20(24), 14994-15006. https://doi.org/10.1109/JSEN.2020.3 012153
[13]. Baiden, G., Bissiri, Y., & Masoti, A. (2009). Paving the way for a future underwater omni-directional wireless optical communication systems. Ocean Engineering, 36(9-10), 633-640. https://doi.org/10.1016/j.oceaneng. 2009.03.007
[14]. Benson, B., Li, Y., Faunce, B., Domond, K., Kimball, D., Schurgers, C., & Kastner, R. (2010). Design of a low-cost underwater acoustic modem. IEEE Embedded Systems Letters, 2(3), 58-61. https://doi.org/10.1109/LES.2010.2050 191
[15]. Blackmon, F., Estes, L., & Fain, G. (2005). Linear optoacoustic underwater communication. Applied Optics, 44(18), 3833-3845. https://doi.org/10.1364/AO.44. 003833
[16]. Bourré, A., Lmai, S., Laot, C., & Houcke, S. (2013, June). A robust OFDM modem for underwater acoustic communications. In 2013, MTS/IEEE OCEANS-Bergen (pp. 1-5). IEEE. https://doi.org/10.1109/OCEANS-Bergen.2013. 6608003
[17]. Burrowes, G., & Khan, J. Y. (2011). Short-range underwater acoustic communication networks. In Cruz, N. (Ed.), Autonomous underwater vehicles. (pp. 173- 198). https://doi.org/10.5772/24098
[18]. Cabral, H. M. P. (2014). Acoustic Modem for Underwater Communication [Postgraduate Thesis]. Faculty of Engineering, University of Porto, Portugal.
[19]. Cheon, J., & Cho, H. S. (2017). Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications. Sensors, 17(11). https://doi.org/ 10.3390/s17112465
[20]. CISCO. (2017). Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021. San Jose, USA: Cisco.
[21]. Darwiesh, M., El-Sherif, A. F., Ayoub, H. S., El-sharkawy, Y. H., & Hassan, M. F. (2018, April). Hyper-spectral laser imaging of under-water targets. In International Conference on Mathematics and Engineering Physics (ICMEP-9) (Vol.9, pp. 1-10). https://doi.org/10.21608/icm ep.2018.29583
[22]. DeMartino, C. (2017). Millimeter Waves: Are millimeter waves the wave of the future? Retrieved from https://www.mwrf.com/community/are-millimeter-waveswave- future
[23]. Friedman, N. (2009). Network-centric warfare: How navies learned to fight smarter through three world wars. Naval Institute Press.
[24]. Gabriel, C., Khalighi, M. A., Bourennane, S., Léon, P., & Rigaud, V. (2013). Monte-Carlo-based channel characterization for underwater optical communication systems. Journal of Optical Communications and Networking, 5(1), 1-12. https://doi.org/10.1364/JOCN.5.00 0001
[25]. Gauni, S., Manimegalai, C. T., Krishnan, K. M., Shreeram, V., Arvind, V. V., & Srinivas, T. N. (2021). Design and analysis of co-operative acoustic and optical hybrid communication for underwater communication. Wireless Personal Communications, 117(2), 561-575. https://doi. org/10.1007/s11277-020-07883-1
[26]. Gkikopouli, A., Nikolakopoulos, G., & Manesis, S. (2012, July). A survey on underwater wireless sensor networks and applications. In 2012, 20th Mediterranean Conference on Control & Automation (MED) (pp. 1147- 1154). IEEE. https://doi.org/10.1109/MED.2012.6265793
[27]. Guo, Z., Li, Z., & Hong, F. (2009, January). USS-TDMA: Self-stabilizing TDMA algorithm for underwater wireless sensor network. In 2009, International Conference on Computer Engineering and Technology (Vol. 1, pp. 578- 582). IEEE. https://doi.org/10.1109/ICCET.2009.54
[28]. Gussen, C. M., Diniz, P. S., Campos, M. L., Martins, W. A., Costa, F. M., & Gois, J. N. (2016). A survey of underwater wireless communication technologies. Journal of Communication and Information Systems, 31(1), 242-255.
[29]. Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater wireless sensor networks: A survey. Sensors, 12(2), 2026-2061. https://doi. org/10.3390/s120202026
[30]. Han, S., Noh, Y., Liang, R., Chen, R., Cheng, Y. J., & Gerla, M. (2014). Evaluation of underwater opticalacoustic hybrid network. China Communications, 11(5), 49-59. https://doi.org/10.1109/CC.2014.68804 60
[31]. Hanson, F., & Radic, S. (2008). High bandwidth underwater optical communication. Applied Optics, 47(2), 277-283. https://doi.org/10.1364/AO.47.000277
[32]. Harris III, A. F., Stojanovic, M., & Zorzi, M. (2009). Idletime energy savings through wake-up modes in underwater acoustic networks. Ad Hoc Networks, 7(4), 770- 777. https://doi.org/10.1016/j.adhoc.2008.07.014
[33]. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158-175. https://doi.org/10.1098/rsta.2011.0214
[34]. Jaruwatanadilok, S. (2008). Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory. IEEE Journal on Selected Areas in Communications, 26(9), 1620-1627. https://doi.org/10.1109/JSAC.2008.081202
[35]. Jeon, J. H., Hwangbo, S. H., Peyvandi, H., & Park, S. J. (2012, October). Design and implementation of a bidirectional acoustic micro-modem for underwater communication systems. In 2012, Oceans (pp. 1-4). IEEE. https://doi.org/10.1109/OCEANS.2012.6404886
[36]. Jinqiu, W., Gang, Q., & Pengbin, K. (2018). Emerging 5G multicarrier chaotic sequence spread spectrum technology for underwater acoustic communication. Complexity, 1-7. https://doi.org/10.1155/2018/3790529
[37]. Kao, C. C., Lin, Y. S., Wu, G. D., & Huang, C. J. (2017). A comprehensive study on the internet of underwater things: Applications, challenges, and channel models. Sensors, 17(7). https://doi.org/10.3390/s17071477
[38]. Kaushal, H., & Kaddoum, G. (2016). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 19(1), 57-96. https://doi.org/10.1109/COMST.2016.2603 518
[39]. Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518- 1547. https://doi.org/10.1109/ACCESS.2016.2552538
[40]. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231-2258. https://doi.org/10.1109/COMST.2014. 2329501
[41]. Kumar, M. L., & Rani, M. J. (2019). A design of novel hybrid opto-acoustic modem for under water communication. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(8), 3383- 3389.
[42]. Kumar, M. L., Rani, M. J., & Anand, M. (2019). Research survey on issues and challenges in underwater optical and acoustic communication. Journal of Advanced Research in Dynamical & Control Systems, 11(02), 765-776.
[43]. Kumar, M. L., Rani, M. J., & Anand, M. (2020). Underwater optical and acoustic communication through a novel hybrid opto-acoustic modem. Journal of Advanced Research in Dynamical & Control Systems, 12(06), 1723-1732.
[44]. Lacovara, P. (2008). High-bandwidth underwater communications. Marine Technology Society Journal, 42(1), 93-102.
[45]. Lanbo, L., Shengli, Z., & JunHong, C. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977-994. https://doi.org/10. 1002/wcm.654
[46]. Leeson, M. S., & Higgins, M. D. (2018). Optical wireless and millimeter waves for 5G access networks. In Kishk, A. (Ed.), The Fifth Generation (5G) of Wireless Communication. (pp. 5 - 24.) IntechOpen. https://doi.org/10.5772/intech open.77336
[47]. Li, B., Huang, J., Zhou, S., Ball, K., Stojanovic, M., Freitag, L., & Willett, P. (2009). MIMO-OFDM for high-rate underwater acoustic communications. IEEE Journal of Oceanic Engineering, 34(4), 634-644. https://doi.org/10. 1109/JOE.2009.2032005
[48]. Li, B., Zhou, S., Stojanovic, M., Freitag, L., & Willett, P. (2008). Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering, 33(2), 198-209. https:// doi.org/10.1109/JOE.2008.920471
[49]. Munafò, A., Simetti, E., Turetta, A., Caiti, A., & Casalino, G. (2011). Autonomous underwater vehicle teams for adaptive ocean sampling: A data-driven approach. Ocean Dynamics, 61(11), 1981-1994. https:// doi.org/10.1007/s10236-011-0464-x
[50]. Nowsheen, N., Benson, C., & Frater, M. (2010, September). A high data-rate, software-defined underwater acoustic modem. In Oceans 2010 MTS/IEEE Seattle (pp. 1-5). IEEE. https://doi.org/10.1109/OCEANS. 2010.5664474
[51]. Paradis, B., Bachand, C. L., Gendron, P. J., & Brown, D. A. (2014, May). Development of a high frequency underwater acoustic communication modem. In Proceedings of Meetings on Acoustics 167ASA (Vol. 21, No. 1). Acoustical Society of America. https://doi.org/10.1121/ 1.4884782
[52]. Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264-302. https://doi.org/10.1109/COMST. 2017.2783901
[53]. Pirinen, P. (2014, November). A brief overview of 5G research activities. In 1st International Conference on 5G for Ubiquitous Connectivity (pp. 17-22). IEEE.
[54]. Saeed, N., Celik, A., Al-Naffouri, T. Y., & Alouini, M. S. (2018). Underwater optical wireless communications, networking, and localization: A survey. Ad-Hoc Networks.
[55]. Sánchez, A. M., Blanc, C. S., Yuste, P. P., Perles, I. A., & Serrano, M. J. J. (2011, June). An acoustic modem featuring a multi-receiver and ultra-low power. Circuits and Systems, 6(1), 1-12. https://doi.org/10.4236/cs.2015.61001
[56]. Sánchez, A. M., Blanc, C. S., Yuste, P. P., & Serrano, M. J. J. (2011, June). A low cost and high efficient acoustic modem for underwater sensor networks. In OCEANS 2011 IEEE-Spain (pp. 1-10). IEEE. https://doi.org/10.1109/ Oceans-Spain.2011.6003428
[57]. Santoso, T. B., Wirawan., & Hendrantoro, G. (2009). Under water acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84-89. https://doi.org/ 10.1109/MCOM.2009.4752682
[58]. Schirripa, S. G., Cozzella, L., & Leccese, F. (2020). Underwater optical wireless communications: Overview. Sensors, 20(8). https://doi.org/10.3390/s20082261
[59]. Shi, J., Zhang, S., & Yang, C. J. (2012, May). High frequency RF based non-contact under water communication. In 2012, Oceans-Yeosu (pp. 1-6). IEEE. https://doi.org/10.1109/OCEANS-Yeosu.2012.6263403
[60]. Sozer, E. M. (2005, June). Simulation and rapid prototyping environment for underwater acoustic communications: Reconfigurable modem. In Europe Oceans 2005 (Vol. 1, pp. 80-85). IEEE. https://doi.org/ 10.1109/OCEANSE.2005.1511688
[61]. Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (Eds.). (2016). Optical wireless communications: An emerging technology. Springer.
[62]. Wills, J., Ye, W., & Heidemann, J. (2006, September). Low-power acoustic modem for dense underwater sensor networks. In Proceedings of the 1st ACM international workshop on Underwater networks (pp. 79-85).
[63]. Wu, J., Ma, X., Qi, X., Babar, Z., & Zheng, W. (2017). Influence of pulse shaping filters on PAPR performance of underwater 5G communication system technique: GFDM. Wireless Communications and Mobile Computing.
[64]. Wu, L., Trezzo, J., Mirza, D., Roberts, P., Jaffe, J., Wang, Y., & Kastner, R. (2011). Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embedded Systems Letters, 4(1), 1-4. https://doi.org/10.1109/LES.2011. 2180013
[65]. Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2016). A survey of underwater optical wireless communications. IEEE Communications Surveys & Tutorials, 19(1), 204-238. https://doi.org/10.1109/COMST. 2016.2618841
[66]. Zhou, S., & Wang, Z. (2014). OFDM for underwater acoustic communications. John Wiley & Sons.
[67]. Zia, M. Y. I., Poncela, J., & Otero, P. (2021). State-ofthe- Art underwater acoustic communication modems: Classifications, analyses and design challenges. Wireless Personal Communications, 116(2), 1325-1360. https://doi. org/10.1007/s11277-020- 07431-x,
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 15 15 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.