References
[1]. Agrawal, A., Dube, A. N., Kansara, D., Shah, S., & Sheth, S. (2016). Exoskeleton: The friend of mankind in context of rehabilitation and enhancement. Indian Journal of Science and Technology, 9(S1), 1-8. https://doi.org/10.1 7485/ijst/2016/v9iS1/100889
[2]. Alabdulkarim, S., Kim, S., & Nussbaum, M. A. (2019). Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task. Applied Ergonomics, 80, 136-145. https://do i.org/10.1016/j.apergo.2019.05.014
[3]. Cappozzo, A. (1984). Gait analysis methodology. Human Movement Science, 3(1-2), 27-50. https://doi.org/ 10.1016/0167-9457(84)90004-6
[4]. Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012, IEEE International Conference on Robotics and Automation (pp. 2463- 2470). IEEE. https://doi.org/10.1109/ICRA.2012.6224967
[5]. Hong, M. B., Kim, G. T., & Yoon, Y. H. (2019). Ace-ankle: A novel sensorized RCM (remote-center-of-motion) ankle mechanism for military purpose exoskeleton. Robotica, 37(12), 2209-2228.
[6]. Huysamen, K., Bosch, T., de Looze, M., Stadler, K. S., Graf, E., & O'Sullivan, L. W. (2018). Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics, 70, 148-155. https://doi.org/10.1016/j.ap ergo.2018.02.009
[7]. Hyun, D. J., Bae, K., Kim, K., Nam, S., & Lee, D. H. (2019). A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks. Robotics and Autonomous Systems, 122, 103309. https://doi.org/10.1016/j.robot.201 9.103309
[8]. Hyun, D. J., Park, H., Ha, T., Park, S., & Jung, K. (2017). Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance. Robotics and Autonomous Systems, 95, 181-195. https:// doi.org/10.1016/j.robot.2017.06.010
[9]. Kang, J., Sun, C., Zou, J., Yuan, Y., & Liu, J. (2018). Kinematics and dynamics analysis of the weight-bearing lower limb exoskeleton. International Journal of Science, 5(3), 12-18.
[10]. Kim, H., Shin, Y. J., & Kim, J. (2017). Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 46, 32-45. https://doi.org/10.1016/j.mechatronics.2017.06. 009
[11]. Lee, H. D., Lee, B. K., Kim, W. S., Han, J. S., Shin, K. S., & Han, C. S. (2014). Human–robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification. Mechatronics, 24(2), 168- 176. https://doi.org/10.1016/j.mechatronics.2014.01.007
[12]. Lee, H., Kim, W., Han, J., & Han, C. (2012). The technical trend of the exoskeleton robot system for human power assistance. International Journal of Precision Engineering and Manufacturing, 13(8), 1491-1497. https://doi.org/10.1007/s12541-012-0197-x
[13]. Luo, L., Yuan, Y., & Li, Z. (2019, July). Design and development of a wearable lower limb exoskeleton robot. In 2019, IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 599-604). IEEE. https://doi.org/10.1109/ICARM.2019.8833912
[14]. Mudie, K. L., Boynton, A. C., Karakolis, T., O'Donovan, M. P., Kanagaki, G. B., Crowell, H. P., ... & Billing, D. C. (2018). Consensus paper on testing and evaluation of military exoskeletons for the dismounted combatant. Journal of Science and Medicine in Sport, 21(11), 1154- 1161. https://doi.org/10.1016/j.jsams.2018.05.016
[15]. Plooij, M., Wisse, M., & Vallery, H. (2016). Reducing the energy consumption of robots using the bidirectional clutched parallel elastic actuator. IEEE Transactions on Robotics, 32(6), 1512-1523. https://doi.org/10.1109/TRO.2 016.2604496
[16]. Sado, F., Yap, H. J., Ghazilla, R. A. R., & Ahmad, N. (2019). Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works. Mechatronics, 63, 102272. https://doi.org/ 10.1016/j.mechatronics.2019.102272
[17]. Singla, A., Dhand, S., & Virk, G. S. (2016). Mathematical modelling of a hand crank generator for powering lower-limb exoskeletons. Perspectives in Science, 8, 561-563. https://doi.org/10.1016/j.pisc.2016.06.020
[18]. Van Dijk, W., Van der Kooij, H., & Hekman, E. (2011, June). A passive exoskeleton with artificial tendons: Design and experimental evaluation. In 2011, IEEE International Conference on Rehabilitation Robotics (pp. 1-6). IEEE. https://doi.org/10.1109/ICORR.2011.5975470
[19]. Wang, S., Van Dijk, W., & van der Kooij, H. (2011, June). Spring uses in exoskeleton actuation design. In 2011 IEEE International Conference on Rehabilitation Robotics (pp. 1-6). https://doi.org/10.1109/ICORR.2011.5975471
[20]. Zhang, J. F., Yang, C. J., Chen, Y., Zhang, Y., & Dong, Y. M. (2008). Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton. Mechatronics, 18(8), 448-457. https://doi.org/10.1016/j. mechatronics.2008.02.006