References
                                               [1]. Accton. (2021). The Emergence of 5G mmWave.
Accton Making Partnership Work. Retrieved from https://
www.accton.com/Technology-Brief/the-emergence-of-
5g-mmwave/ 
 [2]. Brown, G. (2017). Service-based architecture for 5G
core networks: A heavy reading white paper produced for
Huawei Technologies Co. Ltd. HeavyReading. Retrieved
from https://www.huawei.com/en/press-events/news/
2017/11/HeavyReading-WhitePaper-5G-Core-Network 
 [3]. Chen, J., Ge, X., & Ni, Q. (2019). Coverage and
handoff analysis of 5G fractal small cell networks. IEEE
Transactions on Wireless Communications, 18(2), 1263-
1276. 
 [4]. Gaspard, G., & Kim, D. S. (2020). Optimal sensing and
interference suppression in 5G cognitive radio networks.
Journal of Communications, 15(4). 
 [5]. Ge, X., Jia, H., Zhong, Y., Xiao, Y., Li, Y., & Vucetic, B.
(2019). Energy-efficient optimization of wireless-powered
5g full-duplex cellular networks: A mean field game
approach. IEEE Transactions on Green Communications
and Networking, 3(2), 455-467. 
 [6]. Gupta, A., & Jha, R. K. (2015). A survey of 5G network:
Architecture and emerging technologies. IEEE Access, 3,
1206-1232. 
 [7]. Jamalzadeh, M., Ong, L. D., & Nor, M. N. B. M. (2018).  5G Technologies: A new network architectures and design.
Journal of Internet Technology, 19(7), 1983-1991. 
 [8]. Kela, P., Costa, M., Turkka, J., Koivisto, M., Werner, J.,
Hakkarainen, A., ..., & Leppanen, K. (2016, September).
Location-based beamforming in 5G ultra-dense networks.
 In 2016, IEEE 84th Vehicular Technology Conference (VTCFall)
(pp. 1-7). IEEE. 
 [9]. Kishida, A., Morihiro, Y., Asai, T., & Okumura, Y. (2018,
January). Cell selection scheme for handover reduction
based on moving direction and velocity of UEs for 5G multilayered
radio access networks. In 2018, International
Conference on Information Networking (ICOIN) (pp. 362-
367). IEEE. 
 [10]. Li, X., Guo, C., Gupta, L., & Jain, R. (2019). Efficient
and secure 5G core network slice provisioning based on
VIKOR approach. IEEE Access, 7, 150517-150529. 
 [11]. Mademann, F. (2018). The 5G system architecture.
Journal of ICT Standardization, 6(1), 77-86. 
 [12]. Matalatala, M., Deruyck, M., Tanghe, E., Martens, L.,
& Joseph, W. (2017). Performance evaluation of 5G
millimeter-wave cellular access networks using a capacitybased
network deployment tool. Mobile Information
Systems. https://doi.org/10.1155/2017/3406074 
 [13]. Mowla, M. M., Ahmad, I., Habibi, D., & Phung, Q. V.
(2018). Energy-efficient backhauling for 5G small cell
networks. IEEE Transactions on Sustainable Computing,
4(3), 279-292. 
 [14]. Mughees, A., Tahir, M., Sheikh, M. A., & Ahad, A.
(2020). Towards Energy Efficient 5G Networks Using
Machine Learning: Taxonomy, Research Challenges, and
Future Research Directions. IEEE Access, 8, 187498-
187522. 
 [15]. Prasad, K. S. V., Hossain, E., & Bhargava, V. K. (2017).
Energy efficiency in massive MIMO-based 5G networks:
Opportunities and challenges. IEEE Wireless Communications,
24(3), 86-94. 
 [16]. Tran, T. X., Hajisami, A., Pandey, P., & Pompili, D.
(2017). Collaborative mobile edge computing in 5G
networks: New paradigms, scenarios, and challenges. IEEE
Communications Magazine, 55(4), 54-61. 
 [17]. Wu, W., & Liu, D. (2017, October). Non-orthogonal
multiple access based hybrid beamforming in 5G
mmWave systems. In 2017, IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC) (pp. 1-7). IEEE. 
 [18]. Xiao, M., Mumtaz, S., Huang, Y., Dai, L., Li, Y.,
Matthaiou, M., ..., & Ghosh, A. (2017). Millimeter-wave
communications for future mobile networks. IEEE Journal
on Selected Areas in Communications, 35(9), 1909-1935. 
 [19]. Xiao, Z., Zhu, L., Choi, J., Xia, P., & Xia, X. G. (2018).
Joint power allocation and beamforming for nonorthogonal
multiple access (NOMA) in 5G millimeter-wave
communications. IEEE Transactions on Wireless  Communications, 17(5), 2961-2974. 
 [20]. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X.,
..., & Zhang, Y. (2016b). Energy-efficient offloading for
mobile edge computing in 5G heterogeneous networks.
IEEE Access, 4, 5896-5907. 
 [21]. Zhang, Z., Ma, Z., Xiao, M., Karagiannidis, G. K., Ding,
Z., & Fan, P. (2016a). Two-timeslot two-way full-duplex
relaying for 5G wireless communication networks. IEEE
Transactions on Communications, 64(7), 2873-2887. 
 [22]. Zhu, R., Wang, Y. E., Xu, Q., Liu, Y., & Li, Y. D. (2018,
January). Millimeter-wave to microwave MIMO relays (M4R)
for 5G building penetration communications. In 2018, IEEE
Radio and Wireless Symposium (RWS) (pp. 206-208). IEEE.