References
[1]. Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001).
Calcite precipitation induced by polyurethaneimmobilized
Bacillus pasteurii. Enzyme and Microbial
Technology, 28(4-5), 404-409. https://doi.org/10.1016/
S0141-0229(00)00348-3
[2]. Beltran, M., & Jonkers, H. (2015). Crack self-healing
technology based on bacteria. Journal of Ceramic
Processing Research 16(1), 33-39.
[3]. Bureau of Indian Standards - 10262. (2009). Guidelines
for concrete mix design proportioning [CED 2: Cement
and Concrete], Indian Standard, New Delhi, India. Retrieved
from https://law.resource.org/pub/in/bis/S03/is.10262.
2009.pdf
[4]. Bureau of Indian Standards - 12269. (2013). Ordinary
Portland cement - 53 grade – specification, Indian Standard,
New Delhi, India. https://www.iitk. ac.in/ce/test/IScodes/
is.12269.2013.pdf
[5]. Bureau of Indian Standards - 2386-3. (1963). Methods
of test for aggregates for concrete, Part 3: Specific gravity,
density, voids, absorption and bulking [CED 2: Cement and
Concrete], Indian Standard, New Delhi, India. Retrieved
from https://www.iitk.ac.in/ce/test/IS-codes/is.2386.3.1963.
pdf
[6]. Bureau of Indian Standards - 4031-6. (1988). Methods
of physical tests for hydraulic cement, Part 6:
Determination of compressive strength of hydraulic
cement (other than masonry cement) [CED 2: Cement
and Concrete], Indian Standard, New Delhi, India. https://www.iitk.ac.in/ce/test/IS-codes/is.4031.6.1988. pdf
[7]. De Belie, N., & De Muynck, W. (2008, November).
Crack repair in concrete using biodeposition. In
Proceedings of the International Conference on Concrete
Repair, Rehabilitation and Retrofitting (ICCRRR), Cape
Town, South Africa (pp. 291-292).
[8]. Edvardsen, C. (1999). Water permeability and
autogenous healing of cracks in concrete. In Innovation in
Concrete Structures: Design and construction (pp. 473-
487). Thomas Telford Publishing.
[9]. Ghosh, P., Mandal, S., Pal, S., Bandyopadhyaya, G., &
Chattopadhyay, B. D. (2006). Development of
bioconcrete material using an enrichment culture of novel
thermophilic anaerobic bacteria. Indian Journal of
Experimental Biology, 44(4), 336-339.
[10]. Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B.,
Cool, R. H., & Quax, W. J. (2012). The multiple signaling
systems regulating virulence in Pseudomonas aeruginosa.
Microbiology and Molecular Biology Reviews, 76(1), 46-65.
https://doi.org/10.1128/MMBR.05007-11
[11]. Jonkers, H. M., & Schlangen, E. (2008, September). A
two component bacteria-based self-healing concrete. In
Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting (pp. 119-
120).
[12]. Matschei, T., Lothenbach, B., & Glasser, F. P. (2007).
The role of calcium carbonate in cement hydration.
Cement and Concrete Research, 37(4), 551-558. https://
doi.org/10.1016/j.cemconres.2006.10.013
[13]. Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S.
(2001). Remediation of concrete using micro-organisms.
ACI Materials Journal-American Concrete Institute, 98(1),
3-9.
[14]. Rao, R., Kumar, U., Vokunnaya, S., Paul, P., Orestis, I., &
Grade, S. (2015). Effect of Bacillus flexus in Healing
Concrete Structures. International Journal of Innovative
Research in Science, Engineering and Technology, 4 (8),
7273-7280. https://doi.org/10.15680/IJIRSET.2015.0408106
[15]. van Breugel, K. (2012, August). Self-healing material
concepts as solution for aging infrastructure. In 37th
Conference on Our World in Concrete & Structures (pp.
1051-1057).
[16]. Wiktor, V., & Jonkers, H. M. (2015). Field performance
of bacteria-based repair system: Pilot study in a parking
garage. Case Studies in Construction Materials, 2, 11-17.
https://doi.org/10.1016/j.cscm.2014.12.004