Abstract

This paper aims to make understand the fundamentals and recent advancement in Multi-core Fiber Technology using Space Division Multiplexing. Few Mode Multi-core Fiber (FM-MCF) that enable Space Division Multiplexing (SDM) have greater potential to improve the transmission capacity compared to Single Spatial Mode Fiber (SSMF). The concept of Heterogeneous Few Mode Multi-core Fibers has paved its way in optical communication system by replacing Homogeneous Few Mode Multi-core Fibers which were previously opted. The uncoupled Multi-core Fibers (MCFs) which can utilize multiple cores are arranged in a fiber as spatial transmission channels and then is used for the SDM transmission. Design of 36 core and 3 mode is also demonstrated. Measurement of Inter-core XT for different bending radius is studied. And to give the readers a glimpse of recent development in Multi-core Fiber (MCF) technology, some noticeable research papers have also been discussed. System implementations based on MCF are mentioned along with future research directions.

Keywords
SDM (Space Division Multiplexing), MCF (Multi-Core Fiber), FMF (Few Mode Fiber), DMD (Differential Mode Delay), (IC-XT) Inter-Core Crosstalk.
How to Cite this Article?
Anshu, Shrivastava, S, M, Sahu, V, Joshi, A, Bhadra, A, Sanghvi, A. S, and Tirkey, N (2016), Modeling Of Capacity Enhancement of Heterogeneous Few Mode Multi-Core Fiber: A Review, i-manager’s Journal on Digital Signal Processing, 4(4), Oct-Dec 2016, 35-46.
References
[1]. R. G. H. Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schulzgen, H. Waardt, A. M. J. Koonen and C. M. Okonkwo, (2014). “Ultra and high-density spatial division multiplexing with a few-mode multicore fibre”. Nature Photonics, Vol.8, pp. 865-870.
[2]. H. Takara, T. Mizuno, H. Kawakami, Y. Miyamoto, H. Matsuda, K. Kitamura, H. Ono, S. Asakawa, Y. Amma, K. Hirakawa, S. Matsuo, K. Tsujikawa, and M. Yamada, (2014). “120.7-Tb/s (7 SDM/180 WDM/95.8 Gb/s) MCF-ROPA Unrepeatered Transmission of PDM-32QAM Channels over 2 0 4 km” .European Conference on Optical Communication (ECOC), Cannes, PD.3.1.
[3]. Saitoh, Kunimasa, and Shoichiro Matsuo, (2013). ”Multicore fibers for large capacity transmission”. Nanophotonics, Vol.2, No.5-6, pp.441 - 454.
[4]. R. Ryf, N.K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S.J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, (2014). “1705-km Transmission over Coupled-Core Fibre Supporting 6 Spatial Modes”. European Conference on Optical Communication (ECOC), Cannes, PD.3.2.
[5]. K. Shibahara, T. Mizuno, H. Takara, A. Sano, H. Kawakami, D. Lee, Y. Miyamoto, H. Ono, M. Oguma, Y. Abe, T. Kobayashi, T. Matsui, R. Fukumoto, Y. Amma, T. Hosokawa, S. Matsuo, K. Saito, H. Nasu, and T. Morioka, (2015). “Dense SDM (12 core3 mode) Transmission over 527 km with 33.2-ns Mode-Dispersion employing Low Complexity Parallel MIMO Frequency- Domain Equalization ” . Conference on Optical Fiber Communication (OFC), Los Angeles, Th5C.2.
[6]. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, and M. Suzuki, (2015). “114 Space-Division-Multiplexed Transmission over 9.8-km Weakly Coupled 6 Mode Uncoupled 19 Core Fibers”. Conference on Optical Fiber Communication (OFC), Los Angeles, Th5C.4.
[7]. R. Ryf, H. Chen, N. K. Fontaine, A. M. V. Benftez, J. A. Lopez, C. Jin, B. Huang, M.B. Astruc, D. Molin F. Achten, P. Sillard, and R. A. Correa, (2015). “10-Mode Mode- Multiplexed Transmission over 125-km Single-Span Multimode Fiber”. European Conference on Optical Communication (ECOC), Valencia, PDP 3.2.
[8]. Shieh, W, Hongchun Bao, and Y. Tang, (2008). “Coherent optical OFDM: Theory and Design”. Optics Express, Vol. 16, No.2, pp. 841-859.
[9]. Ryf, Roland, et al. (2014). “Space-division Multiplexed Transmission Over 33 Coupled-core Multi-core Fiber”. Optical Fiber Communication Conference. Optical Society of America.
[10]. Matsuo, Shoichiro, et al., (2011). “Large-effectivearea ten-core fiber with cladding diameter of about 200 mm”. Optics Letters, Vo. 36, No.23, pp. 4626 - 4628.
[11]. Takeshima, K. et al., (2015). “51.1-Tbit/s MCF transmission over 2,520 km using cladding pumped 7-core EDFAs”. Optical Fiber Communication Conference (OFC), Los Angeles (California), W3G.1, doi:10.1364/OFC.2015. W3G.1
[12]. Takara, A. et al., (2015). “Dense SDM (12-core3- mode) transmission over 527 km with 33.2-ns mode dispersion employing low complexity parallel MIMO frequency domain equalization”. Optical Fiber Communication Conference (OFC), Los Angeles (California), ThC.3, doi: 10.1364/OFC.2015.Th5C.3
[13]. Soma, D. et al., (2015). “2.05 Pbit/s super nyquist WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full Cband”. European Conference on Optical Communications (ECOC), Valencia (Spain), Paper 3.2, doi: 10.1109/ECOC. 2015.7341686.
[14]. Puttnam, B. J. et al. (2015). “2.15 Pb/s transmission using a 22-core homogeneous single-mode multi-core fiber and wideband optical comb”. European Conference on Optical Communications (ECOC), Valencia (Spain), doi: 10.1109/ ECOC. 2015. 7341685
[15]. Ye, F. et al., (2015). “High-count multi-core fibers for space division multiplexing with propagation direction interleaving”. Optical Fiber Communication Conference (OFC), Los Angeles (California), doi: 10.1364/OFC. 2015. Th4C.3.
[16]. Ye, F. et al., (2016). Wavelength Dependence of Inter Core Crosstalk in Homogeneous Multi-core Fibers”. IEEE Photon. Technol. Lett., Vol. 28, pp.2730.
[17]. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. aitoh and M. Koshiba, (2010). “Reduction of Crosstalk by Quasihomogeneous Solid Multicore Fiber”. Conference on Optical Fiber Communication (OFC), San Diego, OWK7.
[18]. Kunimasa Saitoh, and Shoichiro Matsuo, (2016). “Multicore Fiber Technology”. Journal of Lightwave Technology (JLT), Vol.34, No.11,pp.55 - 66.
[19]. Yusuke Sasaki, Yoshimichi Amma, Katsuhiro Takenga, Shoichiro Matsuo, Kunimasa Saitoh, and Masanori Koshiba, (2015). “Few Mode Multicore Fiber With 36 Spatial Modes (Three Modes (LP01 , LP11a , LP11b )., x12 Cores)”. Journal  of Lightwave Technology (JLT), Vol. 33, No.5, pp. 964-970.
[20]. Jun Sakaguchi, Werner Klaus, Jos Manuel Delgado Mendinueta, Benjamin James Puttnam, Ruben Soares Lus, Yoshinari Awaji, Naoya Wada, Tetsuya Hayashi, Tetsuya Nakanishi, Tatsuhiko Watanabe, Yasuo Kokubun, Taketoshi Takahata, and Tetsuya Kobayashi, (2015). “Large Spatial Channel (36-core x 3mode) Heterogeneous Few mode Multi-core Fiber”. Journal of Lightwave Technology (JLT), Vol.34, No.1, pp. 93 - 103.
[21]. J. Sakaguchi, W. Klaus , J.M.D. Mendinueta, B.J. Puttnam , R.S. Luis, Y. Awaji, N. Wada, T. Hayashi, T. Nakanishi, T. Watanabe, Y. Kokubun, T. Takahata, and T. Kobayashi, (2015). “Realizing a 36-core, 3-mode Fiber with 108 Spatial Channels”. Optical Fiber Communication Conference. Optical Society of America.
[22]. Jun Sakaguchi, Werner Klaus, ose-Manuel Delgado Mendinueta, Benjamin J. Puttnam, Ruben S. Lus, Yoshinari Awaji, and Naoya Wada, (2015). “Large-scale, Heterogeneous, Few-mode Multi-core Fiber Technologies with over 100 Spatial Channels”. IEEE Photonics Conference (IPC), IEEE.
[23]. Takayuki Mizuno, Hidehiko Takara, Akihide Sano, and Yutaka Miyamoto, (2015). “High Capacity Dense SDM Transmission Using Multi-core Few-mode Fiber”. IEEE Photonics Conference (IPC), IEEE.
[24]. Masato Yoshida, Shohei Beppu, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa, (2015). “1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz”. Optic Express, Vol.23, No.16, pp. 20760 - 20766.
[25]. Cen Xia, Neng Bai, Ibrahim Ozdur, Xiang Zhou, and Guifang Li, (2011). “Supermodes for optical Transmission”. Optic Express, Vol.19, No.17, pp.16653 - 16664.
[26]. Ren-Jean Essiambre, Gerhard Kramer, Peter J. Winzer, Fellow, Gerard J. Foschini, and Bernhard Goebel, (2010). “Capacity Limits of Optical Fiber Networks”. Journal of Lightwave Technology (JLT), Vol.28, No.4, pp. 662 - 701.
[27]. Koshiba M, Saitoh K, and Kokubun Y, (2009). “Heterogeneous multi-core fibers: proposal and design principle”. IEICE (Institute Of Electronics Information And Communication Engineers Electronics Express, Vol. 6, No.2, pp.98-103.
[28]. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F.V. Dimarcello, and P.W. Wisk, (2011). “Amplification and noise properties of an erbium doped multicore fiber amplifier”. Optics Express, Vol. 19, No. 17, pp. 16715-16721.
[29]. S. Takasaka, H. Matsuura, W. Kumagai, M. Tadakuma, Y. Mimura, Y. Tsuchida, K. Maeda, R. Miyabe, K. Aiso, K. Doi, and R. Sugizaki, (2013). “Cladding-Pumped Seven- Core EDFA using a Multimode Pump Light Coupler”. European Conference on Optical Communication (ECOC), London, We.4.A.5.
[30]. C. Jin, B. Ung, Y. Messaddeq, and S. LaRochelle, (2015). “Annular-cladding erbium doped multicore fiber for SDM amplification”. Optics Express, Vol.23, No.23, pp.29647-29659.
[31]. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe , (2011) . “109 -Tb/s (7x97 x172 - Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber”. Conference on Optical Fiber Communication (OFC), Los Angeles, PDPB6.
[32]. B. Zhu, X. Liu, S. Chandrasekhar, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, (2011). “112-Tb/s (7x160x107Gb/s) Space- Division Multiplexed DWDM Transmission over a 76.8-km Multicore Fiber”. European Conference on Optical Communication (ECOC), Geneva, Tu.5.B.5.
[33]. J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanashi, K. Imamura, H. Inaba, K. Musaka, R. Sugizaki, T. Kobayashi, and M. Watanabe, (2012). “19- core fiber transmission of 19x100x172-Gb/s SDM-WDMPDM- QPSK signals at 305Tb/s”. Conference on Optical Fiber Communication (OFC), Los Angeles, PDP5C.1.
[34]. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sakaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, (2012). “1.01-Pb/s (12SDM/222WDM/456Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregated spectral efficiency”. European Conference on Optical Communication (ECOC), Amsterdam, Th.3.C.1.
[35]. D. Qian, E. Ip, M. Huang, M. Li, A. Dogariu, S. Zhang, Y. Shao, Y. Huang, Y. Zhang, X. Cheng, Y. Tian, P. Ji, A. Collier, Y. Geng, J. Linares, C. Montero, V. Moreno, X. Prieto, and T. Wang, (2012). “1.05 Pb/s Transmission with 109 b/s/Hz Spectral Efficiency using Hybrid Single- and Few- Mode Cores”. Frontier in Optics, New York, FW6C.3.
[36]. Akihide Sano, Hidehiko Takara, Takayuki Kobayashi, Hiroto Kawakami, Hiroki Kishikawa, Tadao Nakagawa, Yutaka Miyamoto, Yoshiteru Abe, Hirotaka Ono, Kota Shikama, Munehiko Nagatani, Takayoshi Mori, Yusuke Sasaki, Itaru Ishida, Katsuhiro Takenaga, Shoichiro Matsuo, Kunimasa Saitoh, Masanori Koshiba, Makoto Yamada, Hiroji Masuda, and Toshio Morioka, (2013). “409- Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving” Optics Express, Vol.21, No.14, pp.16777- 16783, 2013.
[37]. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M.Yamada, H. Masuda, and T. Morioka, (2013). “2 x 344 Tb/s Propagation-direction Interleaved Transmission over 1500-km MCF Enhanced by Multicarrier Full Electricfield Digital Back-propagation”. European Conference on Optical Communication (ECOC), London, PD3.E.4.
[38]. Y. Kokubun, and M. Koshiba, (2009). “Novel Multi-Core Fibers for Mode Division Multiplexing: Proposal and Design”. IEICE Electronics Express, Vol.6, No.8, pp.522-528.
[39]. K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K.Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, (2013). “1.03-Exabit/s km Super- Nyquist-WDM Transmission over 7,326-km Seven-Core Fiber”. European Conference on Optical Communication (ECOC), London, PD3.E.3.
[40]. V.A.J.M. Sleiffer, P. Leoni, Y. Jung, J. Surof, M. Kuschnerov, V. Veljanovski, D.J. Richardson, S.U. Alam, L. Gruner-Nielsen, Y. Sun, B. Corbett, R. Winfield, S. Calabro, B. Sommerkorn-Krombholz, H. Von Kirchbauer, and H. De Waardt, (2013). “20 x 960-Gb/s MDM-DP-32 QAM transmission over 60 km FMF with inline MM-EDFA”. European Conference on Optical Communication (ECOC), London, We.2.D.2.
[41]. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, (2014). “12-core3-mode Dense Space Division Multiplexed Transmission over 40 km employing Multi-carrier Signals with Parallel MIMO Equalization ” Conference on Optical Fiber Communication (OFC), San Francisco, Th5B.2.
[42]. R. Ryf, N. K. Fontaine, H. Chen, B. Guan, S. Randel, N. Sauer, S.J. B. Yoo, A.M. J. Koonen, R. Delbue, P. Pupalaikis, A. Sureka, R. Shubochkin, Y. Sun and R.Lingle, Jr., (2014). “23 Tbit/s Transmission over 17-km Conventional 50 m Graded-Index Multimode Fiber”. Conference on Optical Fiber Communication (OFC), San Francisco, Th5B.1.
Username / Email
Password
Don't have an account?  Sign Up
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.

Purchase Instant Access

PDF
10
USD

250
INR

HTML
10
USD

250
INR


We strive to bring you the best. Your feedback is of great value to us. Feel free to post your comments and suggestions.