Many samples of amorphous silicon germanium thin films had been fabricated using vacuum thermal deposition technique. Some of the samples are deposited on glass substrates; the others are on Si wafers. The effect of annealing temperature and germanium quantity on the structural and optoelectronic properties are studied and explained. The results obtained from X-ray diffraction show that films are deposited as amorphous structure. The films deposited on glass o substrate start polycrystalline transformation at annealing temperature around 600 C, while the others deposited on Si o o wafer start the transformation near to 655 C and with best results at 830 C. Increasing the germanium quantity from x= 0 to x= 0.3 leads to the reduction of optical energy gap. The behavior of x=0.3 germanium sample gives, somewhat, better quantum efficiency, higher photogenerated current with reasonable output voltage, but higher leakage current. The quantum efficiency tends to decrease with the increase of the wavelength λ and the absorption coefficient α increases with the increase of the quantity of Ge.

Amorphous Silicon Germanium, a-SiGe/a-Si, Solar Cell, Optical Energy Gap, Quantum Efficiency, Annealing Temperature, Absorption Coefficient, Urbach Energy
How to Cite this Article?
Mohamad, W.F., Al-Tikriti, M.N., and Altrabsheh, B. (2017). Crystallization and Optoelectronic Propertiesof a-SiGe/a-Si Solar Cell. i-manager's Journal on Electronics Engineering, 7(2), 1-7.
[1]. J. Y. Huang, C. Y. Lin, C. Shen, J. Shieh, and B. Dai, (2012). “Low cost high efficiency amorphous silicon solar cells with improved light-soaking stability”. Solar Energy Materials and Solar Cells, Vol.98, pp.277-282.
[2]. C. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. Haug, S. Fan, C. Ballif, and Y. Cui, (2012). “High efficiency amorphous silicon Solar Cell on a Periodic Nanocone Back Reflector”. Advanced Energy Materials, Vol.2, No.6, pp.628-633.
[3]. L. K. Wagner and J. C. Grossman, (2008). “Microscopic description of light induced defects in amorphous silicon Solar cells”. Physical Review Letters, Vol.101, No.26, pp.1-5.
[4]. G. Azzouzi and W. Tazibt, (2013). “Improving silicon solar cell efficiency by using the impurity photovoltaic effect”. Energy Procedia, Vol.41, pp.40-49.
[5]. T. Komaru, H. Sato, W. Futako, T. Kamiya, C.M. Fortmann, and I. Shimizu, (2001). “Improved p–i–n solar cells structure for narrow bandgap a-Si: H prepared by Ar* chemical annealing at high temperatures”. Solar Energy Materials and Solar Cells, Vol.66, No.1-4, pp.329-335.
[6]. W.F. Mohammad, (2003). “Calculations of light trapping, responsivity, and internal quantum efficiency of In-doped silicon (n) structure”. Renewable Energy, Vol.28, No.2, pp.311-320.
[7]. Q. H. Fan, C. Chen, Xi. Liao, Xi. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, (2010). “High efficiency silicon–germanium thin film solar cells using graded absorber layer”. Solar Energy Materials and Solar Cells, Vol.94, No.7, pp.1300-1302.
[8]. W.F. Mohammad and M. K. Jarjes, (2000). “Photoelectrical properties of silicon germanium thin films”. Mu’tah Lil-Buhuth Wad-Dirasat, Vol.15, No.4, pp.143-154.
[9]. M. Y. Valakh, V. M. Dzhagan, V. O. Yukhymchuk, O. V. Vakulenko, S. V. Kondratenko, and A. S. Nikolenko, (2007). “Optical and photoelectrical properties of GeSi nanoislands”. Semiconductor Science and Technology, Vol.22, No.4, pp.326-330.
[10]. R. A. Street, (2000). Technology and Applications of Amorphous Silicon. Springer- Verlag, Berlin, Heidelberg.
[11]. N. Motta, F. Rosei, A. Sgarlata, G. Capellini, S. Mobilio, and F. Boscherini, (2002). “Evolution of the intermixing process in Ge/Si (111) self-assembled islands”. Materials Science and Engineering, Vol.88, No.2-3, pp.264-268.
[12]. H. Li, Z. Wu and M. T. Lusk, (2014). “Dangling bond defects: The critical roadblock to efficient photo conversion in hybrid quantum dot solar cells”. J. Phys. Chem. C, Vol.118, No.1, pp.46-53.
[13]. W. Mohammad and M. K. Jarjes, (1995). “Electrical characteristics of a Si1-xGex alloy thin films”. Al-Rafidian Eng. J., Mosul University, Mosul, Iraq, Vol.3, No.2, pp.1-7.
[14]. H. J. Herzog, L. Csepregi, and H. Seidel, (1984). “XRay investigation of boron and germanium doped silicon epitaxial layers”. J. Electrochem. Soc., Vol.131, No.12, pp.2969-2974.
[15]. American Standards for Testing of Materials (ASTM). Retrieved from www.astm.org
[16]. V. Vavrunkova, M. Netrvalova, L. Prusakova, J. Mullerova, and P. Sutta, (2010). “Study of re-crystallization th processes in amorphous silicon films”. 27 International Conference on Microelectronics, IEEE, Microelectronics Proceedings (MIEL), pp.257-260.
[17]. M. H. Cohen, H. Fritzsche, and S. R. Ovshinisky, (1991). “ Simple band model for amorphous semiconductor alloys”. Phys. Rev. Lett., Vol.22, No.20, pp.1065-1068.
[18]. N. Wyrsch, F. Finger, T.J. McMahon, and M. Vanecek, (1991). “How to reach more precise interpretation of sub gap absorption spectra in terms of deep defect density in a-Si:H”. Journal of Non-Crystalline Solids, Vol.137-138, pp.347-350.
Username / Email
Don't have an account?  Sign Up
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.

Purchase Instant Access





We strive to bring you the best. Your feedback is of great value to us. Feel free to post your comments and suggestions.